

Pseudo-random Functions (PRF)

o Let Gk = {8182, -.,8} be a set of functions such that
each g;: {0,1}"" — {0,1}"

@ This set of functions G, , « is called a pseudo-random function
if the following holds.
Suppose we pick g & Gmnk- Let x1,....x € {0,1}" be
distinct inputs. Given (x1,g(x1)),- .., (xt—1,&(x¢—1)) for any
computationally bounded party the value g(x;) appears to be
uniformly random over {0,1}"

PRF

Secret-key Encryption using Pseudo-Random Functions

Before we construct a PRF, let us consider the following secret-key
encryption scheme.

© Gen(): Return sk =id < {1,...,2k}

@ Encig(m): Pick a random r < {0,1}™. Return
(m @ giq(r), r), where m € {0,1}".

@ Deciy(c,r): Return ¢ @ giq(r).

Features. Suppose the messages my, ..., m, are encrypted as the
cipher-texts (c1,), ..., (cu, fu)-
@ As long as the ry,..., r, are all distinct, each one-time pad
gid(n), ..., &gd(rs) appear uniform and independent of others to
computationally bounded adversaries. So, this encryption scheme is
secure against computationally bounded adversaries!

@ The probability that any two of the randomness in r1, ..., r, are not
distinct is very small (We shall prove this later as “Birthday Paradox”)

@ This scheme is a “state-less” encryption scheme. Alice and Bob do not
need to remember any private state (except the secret-key sk)!

PRF

Construction of PRF |

@ We shall consider the construction of
Goldreich-Goldwasser-Micali (GGM) construction.

o Let G: {0,1}* = {0,1}?* be a PRG. We define
G(x) = (Go(x), Gi(x)), where Gy, G : {0,1}* — {0, 1}*

o Let G’: {0,1}* — {0,1}" be a PRG

o We define gig(x1x2...xm) as follows

G (Grpl -~ Gua(G (id)-)

PRF

Construction of PRF Il

Consider the execution for x = x3x2x3 = 010. Output z is computed as follows.

PRF

Pseudocodes

We give the pseudocode of algorithms to construct PRG and PRF
using a OWP f: {0,1}*/2 — {0, 1}*/2
@ Suppose f: {0, 1}k/2 — {0, 1}k/2 is a OWP
o We provide the pseudocode of a PRG G: {0,1}* — {0,1}",
for any integer t, using the one-bit extension PRG
construction of Goldreich-Levin hardcore predicate
construction. Given input s € {0,1}*, it outputs G(s).

G(k,t,s):
Q Interpret s = (r,x), where r, x € {0,1}*/?
@ Initialize bits =[] (i.e., an empty list)
@ Initialize z = x
Q Fori=1tot:

@ bits.append({r, z)), here (-,-) is the inner-product
Q z=1(2)

© Return bits

PRF

Pseudocodes [

@ We provide the pseudocode of the PRF
ga: {0,1}™ — {0,1}", where id € {0,1}¥, using the GGM
construction. Given input x € {0,1}™, it outputs giq(x).

g(m, n, k,id, x):
@ Interpret x = x1x2 . . . Xm, Where xq,..., xn € {0,1}
@ Initialize inp = id
© Fori=1tom:

@ Let y = G(k,2k,inp)
@ If x; =0, then inp is the first k bits of y. Otherwise (if
x; = 1), inp is the last k bits of y.

@ Return G(k, n,inp)

PRF

